Scratch lessons

Sequence

Sequences of commands forms one of the first principles of computer programming to instill into young programmers.

Scratch has a series of programming blocks known as motions used to control the movement of the sprite around the stage and a series of pen commands to control the appearance of the line drawn. 

The onekey application is a good start for young programmers to appreciate the use of sequences of forward and right movements to build shapes including squares, triangles, hexagons, and stars. Children from the age of three onwards can use the onekey application to draw shapes. Young programmers from the age of six can use the Scratch design environment to create their own onekey program.

Building the onekey application is one way to start children working with the Scratch environment and seems to work with children as young as six years old. Open the scratch design environment and investigate the motions programming blocks. Double clicking on the move and turn blocks will move the sprite around the stage. Drag the blocks out onto the scripts area and join together to make a sequence of commands to draw a square for example. Younger programmers can change the distance of the move command but take care not to elaborate on the nature of an angle with children under eight (perhaps always use turn 30 into your applications). 

Make sure the pen is down by dragging the pen down block from the pens blocks into the scripts section of the design environment and double clicking on it. The sprite will now leave a trail. Explore sequences of the move and turn commands and encourage the programmers to create sequences of commands to draw a square, triangle, or hexagon by copying and putting combinations of move 60 and turn 30 commands. 

In the onekey application move 60 corresponds to the forward command and turn 30 to the right command. There is plenty of scope to draw square, triangles, and hexagons by double clicking on the relevant control block. Right click on the items to copy them and fit them together to execute a sequence of commands. Copy a collection of sequences to create the required shapes. 


Introduce the when key pressed command block from the controls section by dragging the appropriate hat control onto the scripts area, changing the key to F (or up arrow) and connecting to the move 60 command. Pressing the F key will now move the sprite forwards. Repeat the process for the R (or right arrow) key to turn 30 and you can now control the sprite moving around the stage. You may also like to add the bounce block to the move command. 

The basics of the onekey application is now complete. The pen down command is required for the sprite to leave a trail and is best attached to the green flag control which should be used to start an application. Round off the application with a move -60 command for the Back command attached to the B key (or down arrow) and a turn -30 for the Left command attached to the L key (or left arrow).

The final stage to complete this application allows the young programmer some creativity. The costume for the sprite can be selected from a range of artwork by selecting the costumes tab and importing a new costume. The sounds tab can be used to import or make a recording with a microphone. Name the sound and create a control for when the space key is pressed and attach a play sound from the sounds programming blocks. Use the pop down selection (click on the arrow) to select the required sound.

The application is now complete and can be saved to disk. Select the notes button to provide a brief description for the application user and save to the disk. The project can also be shared between classmates. 

Our best teaching practice is to build the application yourself either with the programmers watching or with the whole class with an interactive whiteboard and then start a new project so the student can create their own project from scratch. A completed onekey project is available for reference.

[image: image1.png]bl bl




Conditional Statements

Conditional statements ask questions about the program state to choose from a set of different sequences of commands. In Scratch for example, you can determine whether you are at the edge of the stage with the if touching edge control block. The following example (implemented within a forever loop on the shark in the conditional project) causes the sprite to think each time it reaches the edge of the stage before bouncing off again: 

[image: image2.png]ik for @ secs

if on edge, bounce





Conditional statements have slots that are shaped with points on either side which evaluate to a true or a false value and execute if the statement is true. They are found in the controls programming blocks and are used for program flow with if, repeat, forever, and wait blocks. The conditional part of the statement is found amongst the numbers and the sensing areas. 

A predator-prey relationship common in many games can be built using the touch sensors and conditional statements so that they prey is killed when touched by the predator. There seems to be no command to remove a sprite from an application whilst it is running so the following sequence is used to remove a sprite once it has been touched by the predator sprite. The sequence stamps the sprite image onto the stage, shrinks and hides the sprite and moves it into a corner remembering to stop the forever loop (there may be a better way to perform this operation). 

[image: image3.png]



The example conditional project implements this on the fish sprite with a corresponding change of costume on the shark so it looks like the shark eats the fish when they touch:

[image: image4.png]svitch to costume sharks
think [TERIGH for € secs





Pressing the green flag will need to restore the fish sprite back to life by showing the sprite, setting the initial position and size and starting the forever loop:

[image: image5.png]point in direction

setxto

sety to
show

set size to €D %




  

Variables

Variables are used to store information for use in programs. 

Scratch can store only numeric values in a variable which can be dropped in to any program block space with an oval shape. Make a variable in the variables page and set the tick box depending on whether you want to allow the user to view and change the value.

[image: image6.png] Hotion conet

Looks e
= e





Many of the programming blocks have an oval slot where a number is entered to determine how the command will operate. Each of these slots can be replaced with a variable where appropriate. The example below (from project variables) uses the size variable to determine the size of a move command. The value of the variable is changed inside the loop so that the distance travelled increases each time the loop is executed. This allows the sprite to create a squiral shape.

[image: image7.png]oen G =ters

turn © €D degrees





Note that variables can be changed by the end user of the application if the checkbox remains checked in the variables page. You may position the variable on the stage and right click on it to set the range of permissable values which can be set by the user with the slider control. 

Make sure the programmers can define and use variables within their sprite program. They should be able to create an applet that draws a shape using a size variable which can be changed by the user when running the program.

The speed of a sprite in continuous movement can be controlled by a variable defined solely for the sprite and not at the application level. The speed attribute of the main sprite in the variables application is adjusted with the up and down arrow keys or pressing space to stop the sprite. Pressing the left and right keys will alter the direction of the turtle and this type of movement is reminiscent of the computer game asteroids (also known as a dynaturtle in Logo). 

[image: image8.png]D )

if on edge, bounce

turn G- €E) degrees

turn & (D degrees




Messages

Sprites react to key presses or to touching other sprites or colours. A forever loop can also contrain logic to test for certain positions on the stage and so forth. A practical means of communicating between all the object in the applicatiuon (including the stage) is for a sprite to broadcast a message.

One technique is to broadcast a message when a sprite reaches the edge of the stage to cause the background picture to change to the next room. This can be achieved by placing a single pixel of a unique colour onto the background at the point where the entrance to the adjoining room occurs. A forever loop allows a test for the sprite touching this unique colour which then broadcasts a message received by an event conrtol on the background which changes the background.

The sprite logic is as follows and presented in the messages application:

[image: image9.png])
== ]

ponter





Clicking on the stage icon in the design environment allows program blocks to bne defined for the background. The broadcast messages can be used to move from room to room in the Scratch application:

[image: image10.png]



Broadcasting can be used to communicate between sprites and allow sprites to be used as buttons for example by broadcasting a message to all sprites using the sprite clicked control block for the button sprite. 

Another technique allows the backgound application to monitor a variable against a second variable contining the previous value of the variable to broadcast a message when the slider is used to change the value. The following code is added to the forever loop of the stage:

[image: image11.png]I
i j
orever ]

reviovsdrecton = arection





Any sprite that needs to respond to a change in the value of the slider can wait for the relevant message to be broadcast:

[image: image12.png]o i et




